Protein
All animals must eat protein
regularly to survive, because we cannot make protein out of fat or carbohydrate
or cholesterol. Proteins form enzymes, muscles, hormones, and other vital
bodily components. How much protein do we need, and does it matter where we get
it from?
What is
protein?
Proteins are complicated molecules of many different shapes and
sizes that are essential to all forms of life. Proteins are intimately
involved in virtually everything that happens inside our cells and are
infinitely more diverse and complex than carbohydrates and fats.
Below are just a few examples of important bodily proteins:
Enzymes (to run chemical reactions)
Peptide hormones (example: insulin)
Antibodies (immune system molecules)
Muscle fibers
Neurotransmitters (examples: serotonin, adrenaline,
dopamine, nitrous oxide, and histamine)
Blood carrier proteins (examples: hemoglobin, albumin)
Hair, skin, and nails
Melanin (skin pigment)
Below are some examples of important molecules that cannot be
built without proteins:
DNA and RNA
Glutathione (a critical antioxidant)
Creatine (supplies energy to muscles)
Why do we have to eat protein?
Carbohydrates, fats and cholesterol are made of carbon, hydrogen
and oxygen, but proteins are unique because they also contain nitrogen.
This is why the body cannot make protein out of carbohydrate, fat, or
cholesterol. We can make carbohydrate (from protein), and can store some
extra as glycogen. We can
make cholesterol out of anything, and can recycle excess cholesterol in the
bile. We can make most fats out of anything, and can store huge amounts
of extra fat.
We can live a whole lifetime (after infancy) without eating any
carbohydrate, and we can live for 6 months or more without eating any fat,
depending on how much fat we have on our bodies to begin with. However,
we have no way to store proteins and can only live for a maximum of 70 days
without eating any protein.
Since we can’t make proteins from scratch, and we can’t store
excess protein, protein is the only macronutrient that we absolutely must eat
regularly in order to thrive. Without enough protein in the diet, the body will
have no choice but to break down muscle fibers to release the protein it needs
to survive.
What are
amino acids?
Proteins are made up of small building blocks called amino
acids. While there are hundreds of amino acids, there are only 20 amino
acids used to build proteins. By combining these 20 amino acids in
different sequences, cells can create thousands of unique proteins. Amino
acids are like letters of the alphabet, and our cells put them together in
different combinations like words in a dictionary, each one with its own
meaning and purpose.
There are 9 essential (or indispensable) amino acids that
we cannot make from scratch under any circumstances. We must eat all 9 of
these amino acids regularly:
Histidine
Lysine
Threonine
Tryptophan
Leucine (branched)
Isoleucine (branched)
Valine (branched)
Methionine (contains sulfur; can be converted to cysteine)
Phenylalanine (can be converted to tyrosine)
*[Branched chain amino acids are not metabolized by the liver;
they are used primarily by muscle cells.]
There are 5 “conditionally essential” amino acids that
we need to eat under certain circumstances (growth, stress, illness):
·
Tyrosine
·
Cysteine
·
Glutamine
·
Arginine
·
Proline
There are 6 “nonessential” amino acids that we can make
from other amino acids:
1.
Asparagine
2.
Alanine
3.
Serine
4.
Glycine
5.
Aspartic acid and Glutamate
This seems like such a simple question, but it isn’t…
According to the World Health Organization (or WHO), the
definition of the daily protein requirement is:
“the lowest level of
dietary protein intake that will balance the losses of nitrogen from the body,
and thus maintain the body protein mass, in persons at energy balance with
modest levels of physical activity.”
However, the WHO also acknowledges that:
“this definition of the
requirement in terms of nitrogen balance does not necessarily identify the
optimal intake for health, which is less quantifiable.”
And, when it comes to exactly how much of each essential amino
acid we need per day:
“At present, no method is
entirely reliable for determining the dietary requirement for indispensable
amino acids.”
We know that the human body goes through between 300 and 400
grams of protein every day, but that doesn’t necessarily mean that we have to
eat 300 to 400 grams of protein every day; we can get most of that daily amount
simply by recycling used proteins. We can’t recycle all of the
proteins we eat, because some are wasted due to inefficiencies in metabolism,
and some are lost through natural activities of daily living:
§ sloughing of skin cells
§ hair growth
§ DNA/RNA breakdown
§ undigested protein
(eaten by bacteria in the colon)
§ sweat
§ urine ammonia (used to
regulate pH of blood)
§ menstruation
§ semen
§ oxidation/gluconeogenesis
(burning amino acids for energy)
Since we lose some protein every
day, we have to eat protein to replace these losses. The Institute of
Medicine (or IOM) states that the minimum average daily
protein intake for the average adult should be:
0.8 grams of protein per
kg of body weight
OR
0.36 grams of
protein per pound of body weight
For example, a 150-lb person would multiply 150 lbs x 0.36 grams
of protein = 54 grams of protein per day. A simple way to do a rough
calculation of the requirement in your head is to divide body weight by
3. It underestimates it a bit, but it’s very close.
Protein requirements, in grams of protein per pound of body
weight:
0 to 6
mos
0.69
7 to 12
mos
0.54
Age 1 to 3
0.48
Age 4 to
13
0.43
Age 14 to 18
0.39
Age 19 and older 0.36
Pregnant women need additional protein to grow their babies:
1st trimester:
+ 0.5
gram per day
2nd trimester:
+ 8
gram per day
3rd trimester:
+ 25 gram per day
Breastfeeding mothers need additional protein for infant growth:
1st 6 mos:
+ 16 g/day (according to WHO)
2nd 6 mos:
+ 10 g/day (according to WHO)
[The IOM recommends adding 25 grams per day throughout
lactation]
Adults with traumatic injuries (burns, major infections, head
injuries, etc) need to temporarily increase protein intake for healing:
Traumatic injury: 0.90
As for whether exercise increases dietary protein requirements:
“the question of how changes in
energy flux through increased activity influence nitrogen balance may be of
great practical importance. However, this important question is poorly
understood.”
Common sense, though, would seem to indicate that building
muscle should require additional protein.
A thorough list of foods and
their protein content can be found in the USDA National
Nutrient Database for Standard Reference, Release 18.
Keep in mind that grams of protein do not equal grams of meat,
because meat is not pure protein.
For example, a cooked chicken breast weighing 172 grams (6
ounces) contains 54 grams (just under 2 ounces) of protein.
A cooked hamburger weighing 172 grams (6 ounces) contains 42
grams (1.5 ounces) of protein (beef contains less protein per ounce than
chicken because beef contains more fat).
The standard scientific references (such as the WHO and the IOM)
do not address this question, because protein requirement research is conducted
on people eating standard diets, which usually contain a lot of
carbohydrate. People who eat a standard diet make blood sugar out of the
sugars and starches they eat. However, if you eat a very low carbohydrate
diet, you will need to make blood glucose out of protein, instead, because we can only make very small amounts of glucose from
fat. If you don’t eat enough protein to maintain your blood sugar, your
body will steal protein from your muscles to accomplish this critical
task. Therefore, people eating low-carbohydrate diets probably need to
increase their protein intake to maintain healthy blood sugar levels without
losing muscle.
I find no evidence that exceeding your daily minimum protein
requirements is dangerous to your health, so when in doubt, err on the side of
eating more, not less. According to the Institute of Medicine, there is:
“no defined intake level at
which potential adverse effects of protein was identified” and “there is
no evidence that amino acids from usual or even high intakes of protein
from foodstuffs present any risk.”
Now, some of you may have heard that eating high-protein diets
can cause illness, but the high protein diets referred to in these claims were
not simply high in protein—they were also either too low in fat, too low in
calories, too low in nutrients, or contained high amounts of foods that can be
bothersome. There is no evidence that a diet high in animal protein AND
fat is harmful.
Some of you may be familiar with the concept of “rabbit
starvation”, which occurred when people tried to exist on a diet of only very
lean rabbit meat, and became sick. This phenomenon is often cited as a
reason not to eat a diet that contains too much animal protein. However,
the problem with this diet was not the presence of too much animal protein; it
was the absence of adequate fat:
“An exclusive diet of any lean meat, of which
rabbit is a practical example, will cause digestive upset and diarrhea. Eating
more and more rabbit, as one is impelled to do because of the increasing
uneasiness of hunger, will only worsen the condition . The diarrhea and the
general discomfort will not be relieved unless fat is added to the diet. Death
will follow, otherwise, within a few days. One would probably be better off on
just water than on rabbit and water.”
When eating an all-animal diet, which is naturally extremely low
in carbohydrate, the body must use fat for energy. The body also requires
dietary fat to absorb vitamins and other nutrients from foods. There have
been a number of cultures (Eskimos are a good example) which have thrived on
nearly 100% animal food diets for centuries without any ill effects.
You may also have heard that eating too much protein can damage
the kidney, but that is also not true
Any extra protein your body doesn’t need is turned into one of
three things:
urea (urine)
glucose (blood sugar)
ammonia (urine)
When cells have extra protein they don’t need, they send it to
the liver, where it is either turned into glucose or urea. Under standard
conditions, 90% of excess protein is turned into urea (a non-toxic waste
product) and excreted in the urine. The liver has a very high capacity
for urea production and can handle up to 230 grams of protein at a time.
The fate of excess protein is determined by the hormonal
state of the body. For example, if blood sugar is falling, glucagon
and other hormones will turn on gluconeogenesis in
the liver, which turns amino acids into glucose to maintain healthy blood sugar
levels. All amino acids except for leucine and lysine can be turned into
glucose [leucine and lysine can be turned into ketone bodies, instead, which
most of the body’s cells can burn for energy]. When insulin levels are
high, gluconeogenesis turns off, and the liver is asked to turn glucose into
fat, so it is possible to turn excess amino acids into fat under those
conditions.
It is possible for excess protein to cause an increase in blood
sugar levels, however this potential varies from one person to the next, and
the blood sugar elevations that do occur in some people are no match for the
big spikes that can be caused by excess carbohydrates. Ammonia is another way
for the body to get rid of protein, but it’s the least important way.
Everyone has a small amount of ammonia in the blood, and most of this comes
from bacteria in the colon. Bacteria break down undigested proteins in
our food, excreting toxic ammonia as a by-product, which gets absorbed by our
bloodstream. The liver
quickly pulls this ammonia out of circulation so that the level stays very
low. The kidneys are capable of generating ammonia, too, but they excrete
it into the urine (as a way to regulate the acidity of the blood).
Most plant foods contain less protein per ounce than animal
foods.
Most plant foods are missing at least one of the nine essential
amino acids (exceptions include soy and quinoa).
Plant foods tend to be lower in lysine, threonine, and the
sulfur-containing amino acids cysteine and methionine. Wheat protein is
particularly low in lysine. Corn is especially low in tryptophan.
Legumes (including soybeans) are especially low in sulfur-containing amino
acids.
Plant proteins are more likely to cause food allergy and
sensitivity than proteins from most animal meats. Five of the top nine
food allergens are plant proteins: gluten (a protein found in wheat and
related grains), soy, corn, nuts, and peanuts [the other four being milk
protein, egg protein, shellfish and fish].
Some plant proteins are less digestible (less bioavailable) than
animal proteins. Protein from corn and beans are the least digestible, at
about 70%, compared to meat, which is about 94% digestible.
Protein deficiency is very uncommon in the developed world.
Studies of vegans and vegetarians in the developed world find that they
tend to get adequate amounts of protein in their diets. We used to think
that vegans had to eat special combinations of plant foods at every meal to
make sure they were getting all nine essential amino acids their bodies
needed. However, we now know that the body can hold on to amino acids for
several hours, so, as long as vegans are getting all nine essential amino acids
in their diet at some point during the day, they don’t have to worry about
eating them simultaneously at every meal. However, vegans must be careful
to eat a variety of plant protein sources in order to obtain all necessary
amino acids. If rice, corn, wheat, or cassava is the SOLE source of
dietary protein, essential amino acid requirements will not be satisfied.
Unfortunately, protein deficiency is a very common cause of
malnutrition in underdeveloped countries. Protein malnutrition stunts growth,
reduces immune function and increases susceptibility to infection.
Third world diets are often too low in calories of all kinds,
not just protein calories. Inadequate calorie intake can lead to burning
of proteins for energy instead of using them to make important body molecules.
Third world diets are often poor in essential vitamins which are
needed to properly build, utilize, and recycle proteins.
Third world diets are often very high in plant foods, because
they are less expensive than animal foods. Many plant foods contain
“protease inhibitors” which interfere with the body’s ability to digest
proteins, and fiber itself interferes with the absorption of protein.
BOTTOM LINE ABOUT PROTEIN:
We must eat high quality sources of proteins regularly because
we cannot make them from scratch and we cannot store them.
Animal sources of protein are ideal, because they contain all 20
of the amino acids our cells use to build proteins, and because they are easier
to digest and absorb. However, a carefully planned vegan diet can provide
adequate amounts of protein.
Growing children/teens, pregnant/breastfeeding women, people
with traumatic injuries or severe infections, and people eating a
low-carbohydrate diet have higher protein requirements than the average person.
There is no evidence that eating protein in excess of estimated
daily requirements is harmful to health.
Such a good contents .
ReplyDelete